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Sampling Piecewise Convex Unmixing
and Endmember Extraction
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Abstract—A Metropolis-within-Gibbs sampler for piecewise
convex hyperspectral unmixing and endmember extraction is pre-
sented. The standard linear mixing model used for hyperspec-
tral unmixing assumes that hyperspectral data reside in a single
convex region. However, hyperspectral data are often nonconvex.
Furthermore, in standard endmember extraction and unmixing
methods, endmembers are generally represented as a single point
in the high-dimensional space. However, the spectral signature
for a material varies as a function of the inherent variability of
the material and environmental conditions. Therefore, it is more
appropriate to represent each endmember as a full distribution
and use this information during spectral unmixing. The proposed
method searches for several sets of endmember distributions. By
using several sets of endmember distributions, a piecewise convex
mixing model is applied, and given this model, the proposed
method performs spectral unmixing and endmember estimation
given this nonlinear representation of the data. Each set repre-
sents a random simplex. The vertices of the random simplex are
modeled by the endmember distributions. The hyperspectral data
are partitioned into sets associated with each of the extracted sets
of endmember distributions using a Dirichlet process prior. The
Dirichlet process prior also estimates the number of sets. Thus, the
Metropolis-within-Gibbs sampler partitions the data into convex
regions, estimates the required number of convex regions, and
estimates endmember distributions and abundance values for all
convex regions. Results are presented on real hyperspectral and
simulated data that indicate the ability of the method to effectively
estimate endmember distributions and the number of sets of
endmember distributions.

Index Terms—Endmember, hyperspectral, Markov chain
Monte Carlo (MCMC), piecewise convex, sampling, spectral vari-
ation, unmixing.

I. INTRODUCTION

THE linear mixing model (LMM) represents the spectral
signatures in a hyperspectral scene as convex combina-

tions of endmembers. As stated in [1], endmembers are often
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defined as the spectral signatures of the distinct substances in
a hyperspectral data set. The equation and constraints defining
the LMM are as follows:

xj =

M∑
k=1

pjkek + εj . (1)

Here, N is the number of pixels, M is the number of end-
members, εj is an error term, pjk is the proportion of endmem-
ber k in pixel j, and ek is the kth endmember. The proportions
satisfy the following constraints:

pjk ≥ 0 ∀k = 1, . . . ,M (2)
M∑
k=1

pjk =1. (3)

Mathematically, the LMM assumes that endmembers are ver-
tices of a simplex that approximately encloses the spectra,
or data points, present in an image. The approximation is
represented by the error term.

Several methods have been developed for unmixing based on
the LMM. These include methods, such as vertex component
analysis (VCA) [2], that rely on the pixel purity assumption
and assume that the endmembers can be found within the data
set [2]–[5]. Methods have also been developed based on non-
negative matrix factorization [6]–[11], independent component
analysis [12]–[14], and others [15]–[18]. All these methods
search for a single set of endmembers and, therefore, a single
convex region to describe a hyperspectral scene. Since these
algorithms assume a single convex region, they cannot find
appropriate endmembers for nonconvex data sets.

If a scene contains multiple distinct regions that do not
share common materials and if each region contains linear
mixtures of materials, then the set of all image spectra will
consist of a union of simplices. A single simplex is convex,
but the union of simplices is unlikely to be convex. Therefore,
a piecewise convex model is a more appropriate model than
a single convex region. Moreover, the extremal points of the
individual convex sets may appear to be interior points in the
convex hull of all image pixels. Hyperspectral images often
exhibit these characteristics.

Consider the image shown in Fig. 1. This real hyperspectral
data set is nonconvex and would be better represented with
a piecewise convex representation of the data. By examining
these nonconvex sets of spectra from hyperspectral images,
endmembers may appear within the convex hull defined by the
other endmembers in the scene. These interior endmembers
cannot be recovered using methods based on the standard
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Fig. 1. June 1992 AVIRIS Indian Pines “Scene 4” data set [24]. These data
were collected over the Indian Pines test site in an agricultural area of northern
Indiana. The image has 145 × 145 pixels with 220 spectral bands. The data
contain approximately two-thirds agricultural land and one-third forest and
other elements [25]. The crops were at early growth stages and thus have
approximately 5% crop cover with varying levels of residue from previous
crops. (a) Figure showing band 10 (approximately 0.49 μm). (b) AVIRIS Indian
Pines hyperspectral data set after applying MNF dimensionality reduction to
two dimensions [26]. This illustrates that the Indian Pines hyperspectral data
set is not convex but, instead, appears to be piecewise convex.

LMM. However, methods based on a piecewise convex repre-
sentation are able to recover interior endmembers.

Furthermore, the spectral signatures for a material vary
within hyperspectral data collections due to environmental fac-
tors such as illumination or atmospheric effects as well as due
to the inherent variability of a material. In order to represent this
variability, endmembers are represented as full distributions in
sampling piecewise convex unmixing and endmember extrac-
tion (PCUE) (S-PCUE) rather than a single point. In the current
implementation, each endmember is as a Gaussian distribution.
In this case, the representation of a random simplex is the
same as the representation given by the normal compositional
model [19], [20]. In [20], the normal compositional model
is applied to perform spectral unmixing given a known set
of endmembers. In contrast, the proposed method estimates
the endmembers in addition to performing spectral unmixing.

Furthermore, the proposed method estimates the number of
random simplices needed to describe the data set.

The S-PCUE method is a fully stochastic unmixing algorithm
based on a piecewise convex model. The use of a piecewise
convex representation was first presented in [21], [22], and
[23]. The algorithms represented there will be referred to as
piecewise convex endmember (PCE). The S-PCUE method
differs from PCE because S-PCUE fully uses a complete
Bayesian inference strategy whereas PCE does not. Although
PCE uses the Dirichlet process for partitioning the data points
into endmember sets, the endmembers and proportions were
estimated by maximizing an objective function. Therefore, PCE
is a stochastic expectation-maximization (EM) algorithm. The
S-PCUE algorithm provides a fully stochastic extension of
these methods by using a Gibbs sampling approach to sam-
ple all desired parameters. The S-PCUE algorithm estimates
several sets of endmembers, the abundances for each data
point, and the number of endmembers sets needed to repre-
sent a hyperspectral image. The proposed S-PCUE algorithm
improves on the stochastic EM-type algorithms in both time
complexity and convergence guarantees. Since the S-PCUE
algorithm does not require a maximization step each iteration,
the time per iteration is drastically reduced. Furthermore, since
the proposed algorithm satisfies Markov chain Monte Carlo
(MCMC) convergence properties, the proposed method inherits
MCMC convergence guarantees.

II. S-PCUE METHOD

The S-PCUE method represents endmembers as random
vectors and uses a Metropolis-within-Gibbs sampling technique
to extract their values. Representing endmembers as random
vectors provides the capability of representing the spectral vari-
ability associated with a particular material or environmental
condition.

A. Model Description

Each set of endmember distributions represents the materials
that mix together in some subset of the image scene. Each pixel
in the scene is assumed to be a mixture of endmembers from
one and only one set of endmember distributions. Therefore,
the set of sets of endmember distributions defines a partition of
the image pixels; that is, X is a disjoint union X = ∪R

r=1Γr.
Each subset Γr is assumed to satisfy the LMM with end-
members that are distributions. We therefore refer to them as
convex sets. The number of endmember distribution sets is
estimated by sampling from a Dirichlet process. In the current
implementation, the endmembers are modeled using Gaussian
distributions with a fixed isotropic diagonal covariance êm,r ∼
N(em,r,Sm,r), where em,r is the mean value for the mth
endmember distribution in the rth endmember distribution set
and Sm,r is the covariance for the mth endmember distribu-
tion in the rth convex set. In the current implementation, all
endmember distributions are given the same fixed isotropic
diagonal covariance S. Therefore, each of these covariance
matrices is proportional to the identity matrix.

It is assumed that the LMM holds for the set of data points
represented by each set of endmember distributions. Since
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the endmembers are modeled using Gaussian distributions, the
current implementation of S-PCUE follows the normal compo-
sitional model [20] in which endmembers are random vectors
represented by Gaussian distributions and hyperspectral data
points are random vectors distributed according to a convex
combination of the associated Gaussian endmember distribu-
tions. The identity of the endmember set for each hyperspectral
data point is unknown and is represented by a latent variable.
Thus, the likelihood for a data point assigned to a single convex
region is given by

xj |Er,pj ∼ f(xj |Er,pj) = N

(
pjEr,

M∑
m=1

p2jmSm,r

)
(4)

where xj is the jth data point, r is the indicator variable for
the rth set of endmembers, Er is a matrix whose rows are the
endmember means for the rth set of endmembers, and pj is the
vector of proportion values associated with the jth data point
where pjm is the mth element of this proportion vector and M
is the number of endmember distributions in the rth partition. A
somewhat subtle point that is noted here is that there is assumed
to be only one true set of proportions for each data point.
However, there are M estimates of the set of proportions, one
for each partition. Let zj denote the latent variable representing
the partition to which the data point xj is assigned. Then, the
overall likelihood can be written as

R∏
r=1

∏
j∈Ir

f(xj |Er,pj)

where R is the number of convex sets, Ir = {j|zj = r} ⊂
{1, . . . , N} denotes the set of indices of the data points that are
assigned to the rth convex set, and E = {E1, . . . ,ER} denotes
the set of endmember mean matrices.

For each partition, the means of the associated endmember
distributions are assumed to share a Gaussian prior distribution

em,r ∼ N(μr,Cr), m = 1, . . . ,M (5)

where μr and Cr are the mean vector and full covariance
hyperparameters, respectively, in the Gaussian prior distribu-
tion governing the rth set of endmember distribution means.
These hyperparameters are also estimated within the S-PCUE
algorithm. This prior for the mean of the endmember distribu-
tions of a partition was chosen for a number of reasons. First,
it encourages the endmember distributions for each partition
to have a smaller enclosed volume. In other words, the mean
endmembers for each endmember set share a prior distribution
that encourages the endmember distributions to have a tight fit
around the data. Second, estimating a full covariance hyper-
parameter for each partition allows for a tight fit around data
whose collective shape and size differ from partition to parti-
tion. Finally, this distribution is a conjugate prior to endmember
distributions allowing for an efficient Gibbs sampling step.

The prior on all of the means over all sets μ is also given by
a Gaussian distribution whose mean is fixed at the mean of the
input hyperspectral data and whose covariance is Cμ = Iσμ,
where σμ is fixed to a large value relative to the spread of the

entire input data set. This practice, of using marginal means
to estimate hyperparameters, is in the spirit of empirical Bayes
analysis [27]

μr ∼ N

⎛
⎝ 1

N

N∑
j=1

xj ,Cμ

⎞
⎠ . (6)

The prior used for the Cr covariance matrices is the inverse-
Wishart distribution. This prior distribution was chosen as it
is the conjugate prior of the Gaussian distribution over a full
covariance matrix.

The proportion values for all the data points in the image are
given a Dirichlet prior

pj |zj = r ∼ DM (α1,r, . . . , αM,r) (7)

where DM (·) denotes the M -factor Dirichlet distribution
whose density function is given by

DM (pj |zj = r) =
Γ
(∑M

m=1 αm,r

)
∏M

m=1 Γ(αm,r)

M∏
m=1

p
αm,r−1
jm .

By fixing the alpha values to one, the endmembers are encour-
aged to have a tight fit around the data [17]. In the current
implementation, all alpha values are fixed to one. However, one
could choose to use other values for each α. In the current im-
plementation, the number of endmembers M is a set parameter
fixed to a constant value across all partitions.

B. Sampling Method

The S-PCUE algorithm iteratively samples the parameters
and hyperparameters of interest using a Metropolis-within-
Gibbs sampling method. The algorithm is outlined in the psue-
docode shown in Algorithm 1. In the following, each step of
the sampling algorithm, initialization, and the methods used for
setting algorithm parameters are described.

Algorithm 1—S-PCUE: A Metropolis-within-Gibbs sam-
pler partitions the data into convex regions, estimates the re-
quired number of convex regions, and estimates endmember
distributions and abundance values for all convex regions. The
method used for each step is described in the section shown in
parentheses

1: Set Parameter Values and Initialize Partition (Section II-C)
2: for r ← 1 to Rinitial convex sets do
3: Initialize Er, Pr, and Cr (Section II-C)
4: end for
5: for k ← 1 to number of total iterations do
6: for r ← 1 to number of convex sets do
7: for j ← 1 to number of data points do
8: Sample proportions pj for xj for each set of end-

members (Section II-B1)
9: end for
10: for k ← 1 to number of endmembers in convex

set r do
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11: Sample ek,r in convex set r (Section II-B2)
12: end for
13: Sample μr (Section II-B3)
14: Sample Cr (Section II-B4)
15: end for
16: for k ← 1 to K do
17: Sample new E∗

k and P∗
k matrices (Section II-B5)

18: end for
19: for j ← 1 to number of data points do
20: Remove xj from its current convex set
21: Compute DP partition probabilities for xj using (12)

and (13).
22: Sample a convex set for xj based on the DP partition

probabilities (Section II-B6)
23: if A new convex set is sampled then
24: Add the new endmember distribution set to E and

assign xj to this set
25: else
26: Update the label of xj to the sampled endmember

distribution set
27: end if
28: end for
29: end for

1) Sample Proportion Values: The proportion vectors for
each data point and each set of endmembers are sampled in
S-PCUE using a Metropolis–Hastings step. For implementa-
tion, a set of proportions is sampled for each data point for
each set of endmember distributions. This is done to be able to
compute likelihood values using appropriate proportion vectors
for each set of endmembers. The Dirichlet prior shown in (7) is
used as the proposal distribution. This results in the acceptance
ratio shown in (8) used to accept or reject new proportion vector
samples for each data point in each partition

a =
Π
(
pnew
j |X,E, zj = r

)
DM

(
pnew
j |zj = r

) DM

(
pold
j |zj = r

)
Π
(
pold
j |X,E, zj = r

)
=

f
(
xj |E,pnew

j , zj = r
)

f
(
xj |E,pold

j , zj = r
) (8)

where

Π(pj |X,E, zj=r)∝f(xj |E,pj , zj=r)DM (pj |zj=r). (9)

The final equality is found since the proposal distribution
is also the prior on the proportion vectors. In summary,
the new proportion sample is found to be pnew

j = pnew
j γ +

pold
j (1− γ), where γ = I(u < min{(f(xj |E,pnew

j , zj = r)/

f(xj |E,pold
j , zj = r)), 1}). Here, I(m) = 1 when m is true

and zero when m is false and u is randomly drawn from the
uniform distribution over [0, 1].

2) Sample Endmember Distribution Values: A Metropolis–
Hastings step is also used to sample the means of each endmem-
ber distribution. The proposal distribution is a Gaussian mixture
centered on the previous mean endmember value. The first
Gaussian in the mixture has a diagonal covariance with small

values, and the second Gaussian has a diagonal covariance with
large values

g
(
enewm,r |eoldm,r

)
= wnN

(
enewm,r |eoldm,r,Cn

)
+(1− wn)N

(
enewm,r |eoldm,r,Cw

)
(10)

where wn is a fixed parameter used to determine the relative
frequency sampling from a Gaussian with diagonal covariance
whose diagonal covariances are either small or large. The
covariance matrices Cn and Cw are fixed covariances used to
generate the endmember samples. In all experimental results
shown here, both Cn and Cw are fixed parameters set to
isotropic diagonal covariance matrices.

The acceptance ratio will be

a =
Π
(
enewm,r |X,P, z

)
g
(
enewm,r |eoldm,r

) g
(
eoldm,r|enewm,r

)
Π
(
eoldm,r|X,P, z

) (11)

where

Π(em,r|X,P, z)∝
∏

j:zj=r

f(xj |Er,pj , zj=r)f(em,r|μr,Cr)

with f(em,r|μr,Cr) as the distribution in (5).
As stated in Section II-A, the covariance for each endmember

distribution is fixed to a diagonal isotropic matrix in the current
implementation.

3) Sample Endmember Set Means: The hyperparameters
μr, which represent the mean of the Gaussian prior for a set
of endmembers, are sampled using a Metropolis–Hastings set.
A Gaussian mixture is used as the proposal distribution. This
step mimics the previous step described in Section II-B2 for
sampling endmember distribution means. In the current imple-
mentation, the same Gaussian mixture used to generate new
endmember samples in the previous step is used to generate the
μr samples. Similarly, the mixture is centered on the previous
μr value.

4) Sample Endmember Set Covariance: The covariance for
each endmember set Cr is assumed to have an inverse-Wishart
prior Cr ∼ InvWishart(Ψ, t). Given that the inverse-Wishart
is the conjugate prior to the Gaussian distribution with a full
covariance, the covariance for each set is sampled directly using
a Gibbs step from the posterior inverse-Wishart distribution re-
sulting from the product of the likelihood of all of the endmem-
ber distribution means for a partition

∏M
m=1 N(em,r|μr,Cr)

and the InvWishart(Ψ, t) prior.
5) Sample Endmembers and Proportion for Potential New

Partitions: Prior to sampling a partition label for each data
point given updated endmember and proportion values, K
new sets of endmember distributions and associated proportion
values are sampled. These new sets allow for the addition
of new convex sets during the update of the partition labels.
This method of sampling K new endmember distribution sets
follows from the method described in [28]. The number of new
sets considered K is a fixed parameter in the implementation.

The proportion values for each data point and each of the
K new endmember sets are drawn from the Dirichlet prior
for the proportion values as defined in (7). The K new sets
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of endmembers are drawn following the method defined in
Algorithm 2.

Algorithm 2—Sampling New Endmember Sets

1: for k ← 1 to K do
2: Sample μR+k from the Gaussian defined in (6)
3: Sample CR+k from the inverse-Wishart prior
4: for m ← 1 to M do
5: Sample em,R+k from the Gaussian centered at μR+k

with covariance CR+k

6: end for
7: end for

6) Sample Partition Labels: The labels r are distributed
according to a Dirichlet process. These labels determine the
number of endmember distribution sets needed to describe an
input hyperspectral data set as well as the partitioning of the
data points into the various endmember distribution sets. The
likelihood of a data point belonging to a convex region is com-
puted for each existing E and P set and all potential new end-
member sets that were sampled in the previous step as shown in

P (zi = zj |z−i,xi)

= C
n−i,j

α+N − 1
f(xi|pi,Er, zj = r)f(Er)f(pi|zi = r),

j = 1, . . . , R, j �= i (12)
P (zi = R+ 1|z−i,xi)

= C
α
K

α+N − 1
f (xi|p∗

i ,E
∗) f(E∗)f (p∗

i ) (13)

where zi is the indicator variable for the current data point xi,
C is a normalization constant, n−i,j is the number of data
points excluding xi in convex set zj , N is the total number of
data points, K is the number of new endmember distribution
sets sampled, and α is the innovation parameter for the
Dirichlet process.

C. Initialization and Parameter Settings

S-PCUE requires several parameters to be set prior to run-
ning the algorithm. For all experimental results shown, initial-
ization for the algorithm and parameters are determined using
the following methods.

1) Initialization: The initial convex sets and labels for each
data point are determined by fitting the data to a Gaussian
mixture using EM with random initialization. During each iter-
ation of the EM algorithm, Gaussian components are checked
to ensure that the covariance matrix for the corresponding
Gaussian is not becoming singular. If that is the case, the
Gaussian is removed, and the associated points are reassigned
to the remaining Gaussians. Following the application of the
EM algorithm, endmembers are initialized for each convex set
using the VCA algorithm [2]. Finally, proportions for each
data point are initialized randomly by drawing from a uniform
Dirichlet distribution.

2) Parameter Settings: As described in Section II-A, the pa-
rameters for the Gaussian prior on the mean of the endmember

Fig. 2. (a) Results found using VCA algorithm on simulated data. (b) Results
found using SPICE algorithm on simulated data.

distributions are to set to the mean of the data and variance of
the data σμ = var(X).

Section II-B2 states that the means of the endmember dis-
tributions are sampled from a mixture of two Gaussians, one
with a small covariance and another with a large covariance.
Both Gaussians are centered on the previous endmember mean
value. The covariances are set using an order weighted average.
To compute these values, the pairwise Euclidean distances
between each pair of input data points are computed and then
sorted. The small covariance Cn is set to the mean of the small-
est pairwise distance for each data point. The large covariance
Cw is set to the mean of the median pairwise distance for each
data point. For all runs of the algorithm, wn was set to 0.9 such
that the majority of new endmember means are drawn close to
the previous value.

As described in Section II-B6, the sample labels are drawn
from a Dirichlet process. The parameters required for this
step are the number of new partitions considered K and the
innovation parameter α. The primary consideration in setting
the K parameter is the time complexity per iteration. Larger
values of K require longer running time per iteration. K = 5
was found to be a good balance of running time, and the number
of new partitions is considered. The innovation parameter is set
to α = K/N , where N is the number of input data points.

The covariance governing each partition Cr is sampled from
an inverse-Wishart distribution as described in Section II-B4.
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Fig. 3. (a) Scatter plot of simulated data. (b) Results found using S-PCUE
algorithm. (c) Histogram of the number of convex sets over 50 000 samples.

The parameters for the inverse Wishart are set to Ψ = I, and w
is set to a scaled version of the mean of variances of the initial
partitions.

III. RESULTS

The sample PCUE algorithm was run on simulated data and
the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)

Indian Pines and Cuprite scenes. Results are shown on these
data sets and discussed in the following sections.

A. Simulated Data

The S-PCUE algorithm was run on simulated data generated
from three sets of two endmember distributions. The purpose
of this simulated data set was to show that the proposed method
is able to recover interior endmembers that are not found using
conventional single partition unmixing algorithms. Each data
point in this simulated set was generated as a convex combina-
tion of two endmembers with a total of three sets of endmember
pairs. Simulated data generated in this fashion were selected
to simulate the pairwise mixing seen in hyperspectral imagery
such as that shown in [29]. Fig. 3(a) shows the simulated data
set. The results found using the parameters settings described
in Section II-C are shown in Fig. 3(b). As can be seen, the
data are appropriately partitioned, and correct endmembers
are estimated. For comparison, the sparsity promoting iterated
constrained endmembers (SPICE) [30] and VCA [2] algorithms
were also run on this data set. Both methods did not find the
endmember located at (2, 3, 2).

The algorithm was run for 50 000 iterations and, from the
50 000 samples generated, the majority of samples partitioned
the data into three convex regions, as shown in Fig. 3(c). The
result shown in Fig. 3(b) was selected by, first, determining the
number of convex sets found by the majority of the samples
and, then, returning the result that had the largest likelihood
and the appropriate number of convex sets. This method for
selecting the final result was used in all of the runs of S-PCUE.

B. AVIRIS Indian Pines

S-PCUE was applied to the June 1992 AVIRIS Indian Pines
data set as well, shown in Fig. 1. This data set, collected over an
agricultural area in northern Indiana, was collected during very
early growth stages. The data in this image are highly mixed
resulting from the fields having very low crop cover and varying
levels of residue from the previous year’s crops. The S-PCUE
algorithm was applied to a subset of the points selected from
the image (every tenth labeled pixel, resulting in 1031 pixels)
for 50 000 iterations using the parameter settings described in
Section II-C. As shown in the results in Fig. 4, the data are
appropriately partitioned into three convex regions: (partition 1)
woods, grass, and trees; (partition 2) hay, corn, and soybean;
and (partition 3) stone-steel towers. For example, the algorithm
pulls out a distinct hay endmember, whose proportion map is
shown in Fig. 5(b). The soybean and corn fields, which are
primarily soil and crop residue, are shown in the second two
endmembers in Fig. 5(b).

For comparison, the SPICE and VCA algorithms were ap-
plied to the AVIRIS Indian Pines data as well. For SPICE,
the parameters used were μ = 0.001 and γ = 1. SPICE re-
sulted in estimating seven endmembers after initializing with
20 endmembers. The resulting proportion maps estimated by
SPICE are shown in Fig. 7. VCA was used to estimate nine
endmembers from the Indian Pines data set. VCA was set
to estimate nine endmembers since this was the number of
endmembers found by the proposed S-PCUE algorithm. The
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Fig. 4. Scatter plot of results found on the AVIRIS Indian Pines data set
after PCA dimensionality reduction from 220 to 3 dimensions. The large points
correspond to endmembers in the scene.

Fig. 5. Proportion maps found after unmixing using the endmembers es-
timated from the S-PCUE algorithm. (a) Proportion maps corresponding to
endmembers found for partition 1. This partition corresponds primarily to
woods, grass, and trees. (b) Proportion maps corresponding to endmembers
found for partition 2. This partition corresponds primarily to hay (endmember
1), corn, and soybean (endmembers 2 and 3, respectively). (c) Proportion maps
corresponding to endmembers found for partition 3. This partition corresponds
primarily to stone-steel towers.

Fig. 6. Color bar corresponding to all resulting proportion maps. Proportion
values of zero correspond to dark blue, and proportion values of one correspond
to dark red.

proportion maps corresponding to the endmembers estimated
by VCA are shown in Fig. 8. Neither the SPICE nor VCA algo-
rithm was able to estimate the strong hay endmember found by

Fig. 7. Proportion maps found after unmixing using the endmembers esti-
mated from the SPICE algorithm.

the S-PCUE algorithm. However, both SPICE and VCA were
able to estimate a single stone-steel tower endmember which
the S-PCUE assigned to a separate convex region (and, thus,
three endmembers). As discussed in the following, future work
will include estimating the number of endmembers needed per
convex region. In the case of the convex region associated
with stone-steel towers here, only a single endmember may be
needed. The color bar used for all proportion maps is shown in
Fig. 6.

C. AVIRIS Cuprite

S-PCUE was also applied to the AVIRIS Cuprite data set
collected over Cuprite, NV. This area has little vegetation and
visible mineral coverage. A mineral map of the area can be
found in [31]. The S-PCUE algorithm was applied to a subset of
the points selected from the image (every 101st pixel, resulting
in 3113 pixels) for 50 000 iterations using the parameter settings
described in Section II-C. Fig. 9 shows the 3-D plot of the
data and the endmembers found following principal component
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Fig. 8. Proportion maps found after unmixing using the endmembers esti-
mated from the VCA algorithm.

analysis (PCA) dimensionality reduction. Fig. 10 shows the
proportion maps associated with each of the estimated end-
members over the full data set.

The endmembers found by S-PCUE were compared to spec-
tra in the United States Geological Survey (USGS) spectral
library. The spectra with the smallest spectral angle distance
to the estimated endmembers were identified. These spectra are
shown in Fig. 11. The average spectral angle distance between
the estimated endmembers and identified spectra in the USGS
spectral library was 0.037.

Fig. 9. Scatter plot of results found on the AVIRIS Cuprite data set after PCA
dimensionality reduction from 51 to 3 dimensions. The large points correspond
to endmembers in the scene.

Fig. 10. Proportion maps found on the AVIRIS Cuprite data set after unmix-
ing using the endmembers estimated from the S-PCUE algorithm.

For comparison, the SPICE and VCA algorithms were run
on the same AVIRIS Cuprite data. The VCA algorithm was
set to estimate nine endmembers since S-PCUE found nine
endmembers on this data. The SPICE parameters used were
μ = 0.001 and γ = 1. SPICE found nine endmembers after
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Fig. 11. (Red) Estimated endmembers found using S-PCUE on the AVIRIS Cuprite data and (black) USGS spectral library spectra. The USGS spectra were
selected by having the smallest spectral angle distance to the estimated endmembers. The USGS spectra selected for each endmember were (a) muscovite-medhi-Al
CU91-252d.26143, (b) buddingtonite cu93-260b.24428, (c) alunite na dickite_mv99-6-26b.23945, (d) hematite_gds27.9282, (e) hematite_coat_br93-25a.26778,
(f) calc_mont_amx6.24507, (g) buddingtonite_cu93-260b.24428, (h) alunite_gds82.1019, and (i) hematite_coat_br93-25a.26778.

Fig. 12. (Red) Estimated endmembers found using SPICE on the AVIRIS Cuprite data and (black) USGS spectral library spectra. The USGS spectra were
selected by having the smallest spectral angle distance to the estimated endmembers. The USGS spectra selected for each endmember were (a) calcite_
gds304.4124, (b) chlorite_mixture_cu93-65a.24855, (c) nontronite_swa1.16168, (d) montmorillonite_stx1.14644, (e) halloysite_kaolinite_cm29.25328,
(f) montmorillonite-Na_cu93-52.25995, (g) buddingtonite_gds85.3924, (h) jarosite_gds98.11375, and (i) alunite_cu91-217g1.23924.

pruning 11 of the 20 initial endmembers. Figs. 12 and 13 show
the endmembers found and their closest matching spectra in
the USGS spectral library. The average spectral angle distance
between the SPICE and VCA endmembers and spectral library
spectra were 0.136 and 0.071, respectively. Thus, the proposed
method estimated endmembers that have a smaller spectral
angle distance between minerals matched in the USGS spectral
library.

IV. CONCLUSION AND FUTURE WORK

The S-PCUE algorithm presented here uses a Gibbs sampling
approach to estimate sets of endmember distributions, propor-
tion values, and the number of endmember distribution sets
needed to describe a nonconvex hyperspectral image. Thus, the

proposed method provides an endmember estimation and spec-
tral unmixing algorithm given a nonlinear representation of the
data. Future work to further develop this method will include
extending the algorithm to estimating covariance parameters for
each endmember distribution and the number of endmember
distributions per set. For example, consider the stone-steel
tower partition shown in Fig. 5(c). This partition may be best
represented with one or two endmembers; however, the current
algorithm is restricted to the same number of endmembers per
convex region. Currently, the method also does not restrict the
endmembers to be nonnegative which is generally the case
for hyperspectral imagery. Since, after applying dimensionality
reduction, such as PCA or maximum noise fraction (MNF), the
resulting data often have negative components, this restriction
was not included. However, future work can include exploring
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Fig. 13. (Red) Estimated endmembers found using VCA on the AVIRIS Cuprite data and (black) USGS spectral library spectra. The USGS spectra
were selected by having the smallest spectral angle distance to the estimated endmembers. The USGS spectra selected for each endmember were
(a) alunite_hs295.1425, (b)montmorillonite_cm20.14338, (c) chlorite_mixture_cu93-65a.24855, (d)montmorillonite_stx1.14644, (e) calc_mont_amx6.24507,
(f) montmorillonite-Na_cu93-52.25995, (g) halloysite_nmnh106236.9052, (h) jarosite_sj1.11680, and (i) calc_mont_amx6.24507.

the use of truncated Gaussians for endmember proposal and
prior distributions to restrict the endmembers to be nonnegative.
Also, incorporating spatial correlations is an area of future
work [32].

The proposed method applies a fully stochastic MCMC
algorithm to a high-dimensional problem. The advantage of
this is that the algorithm is guaranteed to converge to the joint
distribution over the parameters. The implication is that one can
truly expect to find globally optimal solutions by examining
these distributions. Therefore, MCMC algorithms will almost
certainly eventually find better solutions than algorithms that
find local optima. Given these excellent convergence properties,
it seems that MCMC algorithms should always be used. The
difficulty is that the speed of the algorithm is slow compared
to many existing unmixing algorithms in the literature. Fur-
thermore, it is not obvious how to speed up such an algo-
rithm since they appear to be inherently sequential. Generally,
one cannot run Markov chains in parallel and take the union
of the results while maintaining the convergence properties
because they are different chains. However, Gopal [33] has
made a tremendous theoretical breakthrough in the area of
parallelization of MCMC algorithms. Roughly speaking, he has
devised and demonstrated a method for running Markov chains
in parallel in a way that maintains the convergence properties.
Thus, MCMC methods can now be implemented correctly on
clusters of computers consisting of tens, hundreds, or thousands
of processors. Currently, their methods require some analysis of
each specific problem. It seems clear that, once these methods
are further developed, MCMC methods will become extremely
attractive and potentially be the standard method for parameter
estimation for difficult high-dimensional problems such as hy-
perspectral image analysis. The work described here, together
with the research of Dobigeon et al. [17, 34, 35] and others
[22], [36], represents progress in that direction. Hyperspectral
unmixing is a very complex problem in general. In addition to
piecewise convexity, there are a number of sources of nonlinear-

ity that are only beginning to be considered for large-scale data
sets. Complete analyses of hyperspectral data with multiple
scattering, intimate mixtures, and multiple image components
will certainly benefit from the type of research described in this
paper.
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